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Abstract The High Dimensional Model Representation (HDMR) technique decom-
poses an n-variate function f (x) into a finite hierarchical expansion of component
functions in terms of the input variables x = (x1, x2, . . . , xn). The uniqueness of the
HDMR component functions is crucial for performing global sensitivity analysis and
other applications. When x1, x2, . . . , xn are independent variables, the HDMR com-
ponent functions are uniquely defined under a specific so called vanishing condition.
A new formulation for the HDMR component functions is presented including cases
when x contains correlated variables. Under a relaxed vanishing condition, a gen-
eral formulation for the component functions is derived providing a unique HDMR
decomposition of f (x) for independent and/or correlated variables. The component
functions with independent variables are special limiting cases of the general formu-
lation. A novel numerical method is developed to efficiently and accurately determine
the component functions. Thus, a unified framework for the HDMR decomposition of
an n-variate function f (x) with independent and/or correlated variables is established.
A simple three variable model with a correlated normal distribution of the variables
is used to illustrate this new treatment.
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1 Introduction

Many problems in science and engineering reduce to the need for efficiently con-
structing a map of the relationship between sets of high dimensional system input and
output variables. The system may be described by a mathematical model (e.g., typi-
cally a set of differential equations), where the input variables may be initial and/or
boundary conditions, parameters or functions residing in the model, and the output
variables may be the solutions to the model or a functional of them. The input–output
(IO) behavior may also be based on observations in the laboratory or field where a
mathematical model cannot readily be constructed for the system. In this case the IO
system is simply considered as a black box where the input consists of the measured
laboratory or field (control) variables and the output is the observed system responses.
Regardless of the circumstances, the input is often very high dimensional with many
variables even if the output is only a single quantity. We refer to the input variables
collectively as x = (x1, x2, . . . , xn) with n possibly ranging up to ∼102 −103 or more,
and the output as f (x).

High dimensional model representation (HDMR) is a general set of quantitative
model assessment and analysis tools [1–15] for capturing high dimensional IO system
behavior. As the impact of the multiple input variables on the output can be inde-
pendent and cooperative, it is natural to express the model output f (x) as a finite
hierarchical expansion in terms of the input variables [16]:

f (x) = f0 +
n∑

i=1

fi (xi ) +
∑

1≤i< j≤n

fi j (xi , x j )

+ · · · + f12...n(x1, x2, . . . , xn) (1)

where the zeroth order component function f0 is a constant representing the mean
response to f (x), the first order component function fi (xi ) gives the independent
contribution to f (x) by the i-th input variable acting alone, the second order compo-
nent function fi j (xi , x j ) gives the pair cooperative contribution to f (x) by the input
variables xi and x j , etc. The last term f12...n(x1, x2, . . . , xn) contains any residual
n-th order cooperative contribution of all the input variables. Thus, the above HDMR
expansion with a finite number of terms is always exact.

The basic conjecture underlying HDMR is that the component functions in Eq. 1
arising in typical real problems are likely to reflect only low order cooperativity among
the input variables. In particular, experience shows that an HDMR expansion to 2nd
order

f (x) ≈ f0 +
n∑

i=1

fi (xi ) +
∑

1≤i< j≤n

fi j (xi , x j ) (2)

often provides a satisfactory description of f (x) for many high dimensional systems
when the input variables are properly chosen and the component functions are opti-
mally constructed.
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Exploiting the expected low order variable cooperativity in high dimensional sys-
tems can only be done if practical formulations for constructing the HDMR component
functions can be found. In this regard, two classes of problems arise: either all of the
input variables x = (x1, x2, . . . , xn) are independent or at least some portion of the
variables in x are correlated. Standard formulations of HDMR deal with the case
of independent variables, and this paper makes proper extensions to treat correlated
variables.

As background, when x1, x2, . . . , xn are independent variables (i.e., statistically
uncorrelated), the component functions f0, fi (xi ), fi j (xi , x j ), . . . can be optimally
and uniquely defined for a particular f (x) over the entire domain of x ([ai , bi ], i =
1, 2, . . . , n) by imposing the vanishing condition [10]

bi∫

ai

ws(xs) fi1i2...ik (xi1 , xi2 , . . . , xik )dxs = 0, ∀s ∈ {i1, i2, . . . , ik} (3)

where

⎧
⎪⎪⎨

⎪⎪⎩

wi (xi ) ≥ 0, (ai ≤ xi ≤ bi ),

bi∫
ai

wi (xi )dxi = 1, (i = 1, 2, . . . , n).

(4)

The resultant component functions have the form

f0 =
∫

w(x) f (x)dx, (5)

fi (xi ) =
∫

w−i (x−i ) f (xi , x−i )dx−i − f0, (6)

fi j (xi , x j ) =
∫

w−i j (x−i j ) f (xi , x j , x−i j )dx−i j

− fi (xi ) − f j (x j ) − f0, (7)

· · ·

Here w(x) is the probability density function (pdf) for x satisfying

w(x) =
n∏

i=1

wi (xi ), (8)

and x−i and x−i j refer to x without the elements xi and xi , x j , respectively. Similarly,
w−i (x−i ) and w−i j (x−i j ) are marginal pdf’s obtained by integrating the distribution
over xi and xi , x j , respectively:
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w−i (x−i ) =
∫

w(x)dxi =
n∏

k=1
k �=i

wk(xk), (9)

w−i j (x−i j ) =
∫

w(x)dxi dx j =
n∏

k=1
k �=i, j

wk(xk). (10)

For the sake of notational neatness, we omit the specific integration dimension and
range and use

∫
to represent all integrations. As the expression for a component func-

tion of a particular order only depends on the lower order component functions (e.g.,
see Eq. 7), all the HDMR component functions can be determined sequentially start-
ing from f0. The last term f12...n(x1, x2, . . . , xn) is given from the difference between
f (x) and the sum of all the other component functions. The condition in Eq. 3 assures
that the HDMR component functions are mutually orthogonal

∫
w(x) fi1i2···ik (xi1 , xi2 , . . . , xik ) f j1 j2··· jl (x j1 , x j2 , . . . , x jl )dx = 0.

{i1, i2, · · · , ik} �= { j1, j2, . . . , jl}
(11)

For a uniform input distribution (i.e., wi (xi ) = 1) and [ai , bi ] = [0, 1], Eqs. 5–7
reduce to the formulas given by Sobol [16].

For independent variables (i.e., Eq. 8), the conditional pdf is equal to its corre-
sponding marginal pdf. For example, the conditional pdf for a given value of xi is

wx−i |xi (x−i ) = w(xi , x−i )/wi (xi ) = w(x)/wi (xi )

=
n∏

k=1
k �=i

wk(xk) = w−i (x−i ), (12)

and similarly for a given value of xi , x j

wx−i j |xi ,x j (x−i j ) = w(xi , x j , x−i j )/wi j (xi , x j ) = w(x)/(wi (xi )w j (x j ))

=
n∏

k=1
k �=i, j

wk(xk) = w−i j (x−i j ). (13)

In this case, Eqs. 5–7 can then be expressed in another form

f0 = E( f (x)), (14)

fi (xi ) = E( f (x)|xi ) − f0, (15)

fi j (xi , x j ) = E( f (x)|xi , x j ) − fi (xi ) − f j (x j ) − f0, (16)

· · ·
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where E denotes the expected value. Conditional expectation can be formulated as
a regression process [17]. Therefore, the component functions in Eqs. 14–16 may
be determined by any parametric or non-parametric fitting technique (e.g., least-
squares regression) with suitable experimental or modeling data. When the vari-
ables x1, x2, . . . , xn are independent and putting aside the influence of data errors,
then either individual or simultaneous determination of the component functions,
fi (xi ), fi j (xi , x j ), . . . by minimizing the squared error will give the same results.
Equations 14–16 are commonly used under these circumstances.

Distinct, but formally equivalent HDMR expansions for independent variables, all
of the same structure as Eq. 1, have been constructed. There are two commonly used
HDMR expansions: Cut- and RS (Random Sampling)-HDMR. Cut-HDMR expresses
f (x) in reference to a specified cut point x̄ in the input domain, and is useful for data
sampling performed in a controllable orderly fashion [1–3,5,11]. RS-HDMR depends
on the integration of f (x) over the whole input domain, and applies to data sampled
under an arbitrary pdf, as is often the case with laboratory and field data [6–10,12–15].
Various practical approaches and modifications of HDMR, e.g., mp-Cut-HDMR [5],
Multicut-HDMR [11], lp-RS-HDMR [9], etc., have been developed to improve the
accuracy and efficiency of HDMR.

Constructing the HDMR component functions only requires the values of the output
f (x) at a suitable set of points x. These values may be obtained either from observa-
tional data (without knowing the internal structure of the system) or from a compu-
tational model. Once the component functions are determined, their evaluation only
involves simple algebraic calculations, and calling up f (x) with HDMR for a new (pre-
viously unconsidered) point x is extremely fast. Therefore, the resultant HDMR expan-
sion can be used as a Fully Equivalent Operational Model (FEOM) generated either
from measured laboratory/field data or a mathematical model. A reliable FEOM can
replace time-consuming further modeling or experiments to significantly reduce the
computational or laboratory/field measurement effort (e.g., to facilitate optimization
and inversion problems where model calculations and data collection are called repeat-
edly). Moreover, RS-HDMR provides a means to enable the performance of global
sensitivity analysis to systematically assess which inputs, over a global domain, have
the most influence along with their patterns of independent and cooperative actions
upon the output [15]. In applications, it is important to distinguish (i) cooperative
behavior of the variables in x caused by their role in the physical map x → f (e.g.,
through a differential equation) verses that of (ii) inherent statistical correlation arising
in the pdf of the variables x themselves.

For correlated variables x, the pdf w(x) is not separable as a product
∏n

i=1 wi (xi ).
The conditional expectation of f (x) for a given set of variables can also depend on other
correlated variables (i.e., there can be a contribution from other correlated variables).
Thus, with correlated variables f (x) is no longer the sum of the component func-
tions given by Eqs. 14–16 [18]. In addition, least-squares regression for determining
the component functions individually or simultaneously may give different results.
As w(x) is not separable for correlated variables, the vanishing condition, Eq. 3,
cannot be used as a basis to determine the HDMR component functions. Without a
proper vanishing condition the HDMR decomposition may not be unique for f (x) with
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correlated variables. Importantly, a global sensitivity analysis based on these non-
unique component functions is not meaningful.

Friedman [19] noted that taking the marginal distribution rather than a conditional
distribution given a subset of x preserves the additive structure of f (x), which is the
basis for the unique decomposition of an n-variate function f (x) with correlated vari-
ables. Hooker [20] relaxed the vanishing condition, Eq. 3, and then proved that the
decomposition in Eq. 1 for an n-variate function f (x) obtained by minimization of
the squared error will be unique.

Using the relaxed vanishing condition given by Hooker, we will derive general
formulas for the component functions to produce a unique HDMR decomposition of
f (x) with independent and/or correlated variables. We will prove that the formulas
currently used for independent variables are a special case of the general formulas. We
will also develop a novel numerical method to efficiently and accurately determine the
unique component functions. Thus, a unified framework for a unique HDMR decom-
position of an n-variate function f (x) with independent and/or correlated variables
will be established.

The paper is organized as follows. Section 2 derives the general formulas spec-
ifying the unique HDMR component functions. Section 3 presents the numerical
method for determining the component functions based on extended bases [13] and
D-MORPH (Diffeomorphic Modulation under Observable Response Preserving Ho-
motopy) regression [21]. In Sect. 4, a three variable model with correlation amongst the
variables is used to illustrate the new formulation of HDMR as well as the performance
of the numerical method. Finally, Sect. 5 contains concluding remarks.

2 General formulas for HDMR component functions

In order to make the formulation tractable we use the following multi-index notation
[20]. Given the subset u ⊆ {1, 2, . . . , n}, we denote by xu those variables whose
indexes are in u, and x−u denotes the subset of variables with indexes not in u. We
will also write u ⊆ n in place of u ⊆ {1, 2, . . . , n} for simplicity. Note that u includes
the empty set ∅. Then, the HDMR expansion, Eq. 1, can be written in brief form as

f (x) =
∑

u⊆n

fu(xu). (17)

Since ∅ ∈ u, the above summation contains f0.
Hooker defines the HDMR component functions { fu(xu |u ⊆ n)} for f (x) with

correlated variables as satisfying

{ fu(xu |u ⊆ n)} = argmin{gu∈L2(Ru),u⊆n}
∫ (

∑

u⊆n

gu(xu) − f (x)

)2

w(x)dx

(18)
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under a relaxed vanishing condition

∀u ⊆ n,∀i ∈ u,

∫
fu(xu)w(x)dxi dx−u = 0. (19)

This criterion is equivalent to the hierarchical orthogonality condition

∀v ⊂ u,∀gv :
∫

fu(xu)gv(xv)w(x)dx = 〈 fu(xu), gv(xv)〉 = 0, (20)

i.e., a component function is only required to be orthogonal to all nested lower order
component functions whose variables are a subset of its variables. For example,
fi jk(xi , x j , xk) is only required to be orthogonal to fi (xi ), f j (x j ), fk(xk), fi j (xi , x j ),

fik(xi , xk), and f jk(x j , xk).
Hooker proved that when the support ofw(x) is grid closed, for any {gu |u ⊆ n} ∈ L

2

with at least one gu �= 0 that satisfy Eq. 19, the set of functions {gu |u ⊆ n} are line-
arly independent under the inner product defined by w(x). Then Eq. 18 has a unique
minimizer fu(xu |u ⊆ n) under the condition Eq. 19; otherwise, {gu |u ⊆ n} would be
linearly dependent.

The name “grid closed” means the existence of a grid for every point x in the desired
domain �,1 which is a reasonable circumstance in most realistic cases. Therefore, if
the HDMR component functions can be constructed by minimization of the squared
error under the vanishing condition, Eq. 19, or the equivalent hierarchical orthogo-
nal condition, Eq. 20 (Eq. 19 is the necessary and sufficient condition for Eq. 20), the
resultant component functions { fu(xu |u ⊆ n)} are unique.

Equation 19 can be simplified by implicitly performing the integration for x−u ,
which gives

∀u ⊆ n,∀i ∈ u,

∫
fu(xu)wu(xu)dxi = 0, (21)

where wu(xu) is the marginal pdf for xu . Equation 21 is more convenient than Eq. 19
in the following treatment. It can be readily proved that for independent variables,
i.e., w(x) = ∏n

i=1 wi (xi ), Eq. 21 reduces to Eq. 3. This result implies that Eq. 19 (or
Eq. 21) is a general vanishing condition which includes Eq. 3 as a special case for
independent variables.

We may use the vanishing condition, Eq. 19 or the equivalent Eq. 21, to uniquely
specify the HDMR component functions. The operations involve multiplying Eq. 1 (or
equivalently Eq. 17) by an appropriate marginal pdf, integration over the associated
subset of variables, and application of the vanishing condition in Eq. 21. The proce-
dure will be specifically presented for f0, fi (xi ), fi j (xi , x j ) and fi jk(xi , x j , xk). For
f0, w(x) is used and f0 is the same as that for independent variables

f0 =
∫

f (x)w(x)dx. (22)

1 Consider a simple example: f (x1, x2). The domain � for (x1, x2) is said to be grid closed if for a point
(x1, x2) there always exists another point with only one of the variables being the same. For instance, the
line x1 = x2 is not grid closed; in this restrictive case there does not exist another point with only one
variable being the same.
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For fi (xi ), the marginal pdf w−i (x−i ) is used, and

∫
f (x)w−i (x−i )dx−i =

∑

u⊆n

∫
fu(xu)w−i (x−i )dx−i

= f0

∫
w−i (x−i )dx−i + fi (xi )

∫
w−i (x−i )dx−i

+
∑

{i}⊂u⊆n

∫
fu(xu)w−i (x−i )dx−i

+
∑

i /∈u⊆n

∫
fu(xu)w−i (x−i )dx−i

= f0 + fi (xi ) +
∑

{i}⊂u⊆n

∫
fu(xu)w−i (x−i )dx−i . (23)

Here {i} denotes the subset only containing element i . The relations

∫
w−i (x−i )dx−i = 1 (24)

and

∑

i /∈u⊆n

∫
fu(xu)w−i (x−i )dx−i =

∑

i /∈u⊆n

∫
fu(xu)wu(xu)dxu = 0 (25)

were used in the above operations. Equation 25 is zero because each integral satisfies
Eq. 21. Thus we have

fi (xi ) =
∫

f (x)w−i (x−i )dx−i − f0 −
∑

{i}⊂u⊆n

∫
fu(xu)w−i (x−i )dx−i

=
∫

f (x)w−i (x−i )dx−i − f0 − hi (xi ). (26)

The last term hi (xi ) depends on all of the component functions, higher than first order,
containing xi .

The procedure is similar for fi j (xi , x j ) and fi jk(xi , x j , xk), but with the marginal
pdf’s w−i j (x−i j ) and w−i jk(x−i jk), respectively. We find

fi j (xi , x j ) =
∫

f (x)w−i j (x−i j )dx−i j − f0 − fi (xi ) − f j (x j )

−
∑

u⊆n
{i, j}⋂ u �=∅

∫
fu(xu)w−i j (x−i j )dx−i j

=
∫

f (x)w−i j (x−i j )dx−i j − f0− fi (xi )− f j (x j )−hi j (xi , x j ). (27)
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The last term hi j (xi , x j ) depends on all the component functions of 2nd and higher
order containing either xi , or x j , or both xi , x j . For the 3rd order component function
we have

fi jk(xi , x j , xk) =
∫

f (x)w−i jk(x−i jk)dx−i jk − f0 − fi (xi ) − f j (x j )

− fi j (xi , x j ) − fik(xi , xk) − f jk(x j , xk)

−
∑

u⊆n
{i, j,k}⋂ u �=∅

∫
fu(xu)w−i jk(x−i jk)dx−i jk

=
∫

f (x)w−i jk(x−i jk)dx−i jk − f0 − fi (xi ) − f j (x j )

− fi j (xi , x j ) − fik(xi , xk) − f jk(x j , xk) − hi jk(xi , x j , xk). (28)

The last term hi jk(xi , x j , xk) in Eq. 28 depends on the component functions of 3rd
and higher order containing any or all of the variables xi , x j , xk .

Equations 26–28 show that for correlated variables, a particular component func-
tion of order l depends on all other component functions that contain one or more of
the same variables (i.e., respectively in hi (xi ), hi j (xi , x j ), hi jk(xi , x j , xk)). Thus,
it is impossible to determine the component functions sequentially starting from
f0. For independent variables, the last h-terms in Eqs. 26–28 vanishes because
w−i j (x−i j ), w−i jk(x−i jk) are products of wl(xl)(l ∈ x−i j , x−i jk), and at least for
one variable the vanishing condition, Eq. 3, is satisfied. Then the formulas reduce to
Eqs. 5–7. Therefore, Eqs. 26–28 are general for independent and/or correlated vari-
ables.

Despite the coupled nature of the component functions with correlated variables,
approximate formulas may be constructed. When f (x) can be exactly represented by
a low order HDMR expansion, even exact formulas may be obtained in some cases.
An illustration will be given in Sect. 4.

3 Practical determination of component functions: extended bases
and D-MORPH regression

The mathematical form of f (x) is often unknown in realistic applications. Even if a
formula for f (x) is available, the integrations in Eqs. 26–28 may not be possible ana-
lytically. Thus, direct utilization of Eqs. 26–28 rarely can be employed for constructing
the component functions. In typical applications, the function f (x) is only available
by sampling points in x either from modeling or experiments. Therefore, a practical
numerical method is needed to construct each unique component function directly
from minimizing the squared error under the relaxed vanishing condition (Eqs. 18,
19) or minimizing the squared error under the hierarchical orthogonality condition
(Eqs. 18, 20). Hooker suggested a way to determine these component functions with
x sampled on a grid [20]. In this fashion, Eqs. 18 and 19 become a high dimensional,
sparse linear algebraic system of equations. This procedure appears to be computa-
tional demanding. We take another route: minimization of the squared error under
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the hierarchical orthogonality condition, which can be realized easily. We propose an
efficient method to determine the unique component functions based on utilizing two
tools: extended bases [13] and D-MORPH regression [21], as explained below.

3.1 Extended bases

In previous work [6,7,10,13], the HDMR component functions were approximated
by expansions in particular basis functions. The sufficient condition for hierarchical
orthogonality of the component functions is that the subspace of the Hilbert space
spanned by the basis functions for any lower order component function is a normal
subspace of the subspace spanned by the basis functions of the nested higher order
component functions. Suppose that a subspace V in Hilbert space is spanned by the
basis {v1, v2, . . . , vk}, and a larger subspace U (⊃ V ) is spanned by the extended basis
{v1, v2, . . . , vk, vk+1, . . . , vm}. Then U can be decomposed as

U = V ⊕ V ⊥

where V ⊥ is the orthogonal complement subspace of V in U . One can always find
a vector in V ⊥ (i.e., a certain linear combination of v1, v2, . . . , vk, vk+1, . . . , vm)
orthogonal to all vectors in V [22].

To satisfy this sufficient condition, the component functions are approximated by
expansions in some suitable basis functions {ϕ} (polynomials, splines, etc.) as follows
[13]

fi (xi ) ≈
k∑

r=1

α(0)i
r ϕi

r (xi ), (29)

fi j (xi , x j ) ≈
k∑

r=1

[
α

(i j)i
r ϕi

r (xi ) + α
(i j) j
r ϕ

j
r (x j )

]

+
l∑

p=1

l∑

q=1

β
(0)i j
pq ϕi

p(xi )ϕ
j
q (x j ), (30)

fi jk(xi , x j , xk) ≈
k∑

r=1

[
α

(i jk)i
r ϕi

r (xi ) + α
(i jk) j
r ϕ

j
r (x j ) + α

(i jk)k
r ϕk

r (xk)
]

+
l∑

p=1

l∑

q=1

[
β

(i jk)i j
pq ϕi

p(xi )ϕ
j
q (x j ) + β

(i jk)ik
pq ϕi

p(xi )ϕ
k
q(xk)

+ β
(i jk) jk
pq ϕ

j
p(x j )ϕ

k
q(xk)

]
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+
m∑

p=1

m∑

q=1

m∑

r=1

γ
(0)i jk
pqr ϕi

p(xi )ϕ
j
q (x j )ϕ

k
r (xk), (31)

· · ·

where k, l, m are integers. Note that in Eqs. 29–31 the basis functions of the lower
order component functions are always a subset of those for the higher order ones, and
the hierarchical orthogonality between fi (xi ) fi j (xi , x j ), fi jk(xi , x j , xk), . . . can be
readily achieved. For example, consider fi j (xi , x j ). One can always find suitable val-

ues for α
(i j)i
r , α

(i j) j
r and β

(0)i j
pq such that fi j (xi , x j ) is orthogonal to ϕi

r (xi ), ϕ
j

r (x j ),
as well as any linear combinations of them, and consequently, fi (xi ) and f j (x j ) as
demanded by Eq. 20.

The optimal orthonormal polynomial basis {ϕ} satisfies [13]

∫
wi (xi )ϕ

i
r (xi )dxi ≈

N∑

s=1

ϕi
r (x (s)

i )/N = 0, for all r, i (32)

∫
wi (xi )(ϕ

i
r (xi ))

2dxi ≈
N∑

s=1

(ϕi
r (x (s)

i ))2/N = 1, for all r, i (33)

∫
wi (xi )ϕ

i
p(xi )ϕ

i
q(xi )dxi ≈

N∑

s=1

ϕi
p(x (s)

i )ϕi
q(x (s)

i )/N = 0. p �= q (34)

In this fashion the basis may be constructed from a set of data generated according to a
given pdf, where x (s)

i is the s-th sample and N is the total number of samples. The basis
set members have zero mean, unit norm and are mutually orthogonal with respect to the
marginal pdf weight wi (xi ). In many cases, satisfactory accuracy is likely attainable
using only ϕi

r (xi ), r ≤ 3 to approximate fi (xi ), fi j (xi , x j ) and fi jk(xi , x j , xk).
Employing the formulas in Eqs. 29–31, the 3rd order HDMR expansion for an

n-variate function f (x) can be expressed as

f (x) ≈ f0 +
n∑

i=1

k∑

r=1

(α(0)i
r +

n∑

j=1
j �=i

α
(i j)i
r +

n∑

j<k=1
j,k �=i

α
(i jk)i
r )ϕi

r (xi )

+
∑

1≤i< j≤n

l∑

p=1

l∑

q=1

⎛

⎝β
(0)i j
pq +

n∑

k=1 k �=i, j

β
(i jk)i j
pq

⎞

⎠ϕi
p(xi )ϕ

j
q (x j )

+
∑

1≤i< j<k≤n

m∑

p=1

m∑

q=1

m∑

r=1

γ
(0)i jk
pqr ϕi

p(xi )ϕ
j
q (x j )ϕ

k
r (xk). (35)

123



110 J Math Chem (2012) 50:99–130

The constant coefficients {α}, {β}, {γ } may be determined by minimizing the squared
error (e.g., least-squares regression) from the data (x(s), f (x(s)), s = 1, 2, . . . , N )
generated according to the pdf w(x).

Equation 35 can be written in vector form for all of the data

φ(x(s))T c = f (x(s)) − f0, (s = 1, 2, . . . , N ) (36)

where

f0 =
N∑

s=1

f (x(s))/N . (37)

Here c is composed of all the unknown constant coefficients

cT = (α
(0)1
1 α

(0)1
2 · · · α(0)1

k α
(0)2
1 · · ·α(12)1

1 · · · γ (0)(n−2)(n−1)n
mmm ), (38)

and φ(x(s))T consists of the corresponding basis functions

φ(x(s))T = (ϕ1
1(x (s)

1 ) ϕ1
2(x (s)

1 ) · · · ϕ1
k (x (s)

1 ) ϕ2
1(x (s)

2 ) · · · ϕ1
1(x (s)

1 )

· · · ϕ(n−2)
m (x (s)

n−2)ϕ
(n−1)
m (x (s)

n−1)ϕ
n
m(x (s)

n ))

= (r1(x(s)) r2(x(s)) · · · rt (x(s))). (39)

To simplify the notation, the symbol r j (x) is used to represent all the above basis
functions, and t is the total number of unknown coefficients. Note that there are many
repetitive appearances of some basis functions in φ(x(s))T , because the same basis
function is associated with different coefficients (see Eq. 35), i.e., some of the r j ’s are
the same.

Equation 36 can be written in matrix form as

�c = b (40)

where � is an N × t matrix (the s-th row of � is φ(x(s))T ), and b is an N -dimensional
vector whose s-th element is f (x(s))− f0. Since φ(x(s))T has repeated elements, some
columns of � are identical.

The vector c minimizing the squared error is the solution of the normal equation
for least-squares regression of Eq. 40:

�T �c = �T b (41)

with �T � being a t × t matrix. Dividing both sides of Eq. 41 by N will not change
the solution for c,

1

N
�T �c = 1

N
�T b, (42)
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and now the (i, j)th entry of �T �/N can be viewed as an approximation to the inner
product of ri (x) and r j (x)

(�T �)i j/N =
N∑

s=1

ri (x(s))r j (x(s))/N ≈ 〈ri (x), r j (x)〉. (43)

As �T has duplicate rows, some equations in Eq. 42 are identical. These duplicate
equations are redundant and can be removed. The resultant linear algebraic equation
system is

Ac = d (44)

where A and d are just �T �/N and �T b/N after removing the duplicate rows. Now
A is a p × t (p < t) rectangular matrix. In Eq. 44 the number (t) of unknown coeffi-
cients is larger than the number (p) of equations. Such a system is consistent and has
an infinite number of solutions for c with the general form

c = A+d + (It − A+ A)u, (45)

where It is the identity matrix with dimension t and u is an arbitrary vector in �t , and
A+ is the generalized inverse G of A satisfying all four Penrose conditions [23]

(1) AG A = A, (2) G AG = G,

(3) (AG)T = AG, (4) (G A)T = G A.
(46)

The solution with the smallest norm ‖c‖ commonly produced by least-squares regres-
sion is unique and given by

c = A+d. (47)

This solution will be used later for comparison with the unique HDMR component
functions.

The infinite number of solutions for c given in Eq. 45 provides the possibility to
search for a solution of c both minimizing the squared error and satisfying the hier-
archical orthogonality condition.

3.2 D-MORPH regression

D-MORPH (Diffeomorphic Modulation under Observable Response Preserving
Homotopy) is a model exploration method, originally developed for optimal con-
trol with differential equation models [24–27]. The method was extended to the
regression treatment of a model described as a linear superposition of basis func-
tions with unknown parameters being the expansion coefficients [21]. When there are
more unknown parameters than equations, the corresponding linear algebraic equation
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system is consistent, and has an infinite number of solutions. D-MORPH regression
is a practical systematic means to search for a solution satisfying extra requirements
within the infinite number of possible solutions. Equation 44 is such a system and the
hierarchical orthogonality of the component functions is the extra requirement.

3.2.1 Principles of D-MORPH regression

The key principles of D-MORPH regression are briefly summarized here; further
details can be found in [21]. All the solutions c of Eq. 44 given by Eq. 45 compose
a completely connected submanifold M ⊂ �t . D-MORPH regression searches for a
solution satisfying an extra requirement by considering an exploration path c(s) within
M with s in [0,∞), which satisfies a differential equation2

dc(s)
ds

= Pv(s) = (It − A+ A)v(s), (48)

where P is an orthogonal projector [23] satisfying

P2 = P, PT = P, (49)

which yields

P = P2 = PT P. (50)

The function vector v(s) may be freely chosen to not only enable broad choices
for exploring c(s), but to also continuously reduce a defined cost K(c(s)) (e.g., the
model variance, fitting smoothness, the weighted norm of c, or particularly here the
hierarchical orthogonality of the component functions) along the exploration path. If
the free function vector is chosen as

v(s) = −∂K(c(s))
∂c

, (51)

then we obtain

dK(c(s))
ds

=
(

∂K(c(s))
∂c

)T dc(s)
ds

=
(

∂K(c(s))
∂c

)T

Pv(s)

= −
(

P
∂K(c(s))

∂c

)T (
P

∂K(c(s))
∂c

)
≤ 0, (52)

i.e., the cost K, used as an additional requirement, will be continuously reduced (sys-
tematically refining the model) over the course of traversing s ≥ 0. Therefore,

c∞ = lim
s→∞ c(s)

2 v(s) in Eq. 48 is related with u in Eq. 45 through v(s) = du/ds.
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is the solution which minimizes K. When the cost function is defined as a quadratic
form in c

K = 1

2
cT Bc, (53)

where B is symmetric and non-negative definite, the analytical form of c∞ can be
obtained as

c∞ = Vt−r (U
T
t−r Vt−r )

−1U T
t−r A+d. (54)

where Ut−r , and Vt−r are the last t − r columns of U and V obtained by singular
value decomposition of PB [28]

PB = U

[
Sr 0
0 0

]
V T . (55)

Equation 54 is the key practical formula for the optimal solution c obtained by
D-MORPH regression. This solution c∞ is unique in M corresponding to the global
minimum of the cost function. The new solution c∞ given by D-MORPH regression is
simply a linear combination of the elements of c obtained by least-squares regression
(i.e., A+d).

3.2.2 Construction of the cost function

The solution of Eq. 44 satisfying the hierarchical orthogonality condition can be deter-
mined by constructing a proper cost function. The cost function may be deduced as
follows.

The 1st order component function, fi (xi ), is orthogonal to the zeroth order com-
ponent function, f0, i.e.,

∫
f0 fi (xi )wi (xi )dxi = f0

∫
fi (xi )wi (xi )dxi = 0, (i = 1, 2, . . . , n). (56)

Since f0 may be nonzero, we require

∫
fi (xi )wi (xi )dxi = 0, (i = 1, 2, . . . , n). (57)

When fi (xi ) is represented as a linear combination of basis functions r j (xi )( j =
q + 1, . . . , q + k),3 we have

∫ q+k∑

j=q+1

c jr j (xi )wi (xi )dxi ≈
q+k∑

j=q+1

c j

(
N∑

s=1

r j (x (s)
i )/N

)
= 0. (58)

3 For optimal orthonormal polynomials, k is often chosen as 2 or 3; for B-splines, k depends on the number
of knots used.

123



114 J Math Chem (2012) 50:99–130

Equation 58 can be written as

(
N∑

s=1

rq+1(x (s)
i )/N

N∑

s=1

rq+2(x (s)
i )/N · · ·

N∑

s=1

rq+k(x (s)
i )/N

)
⎛

⎜⎜⎜⎝

cq+1
cq+2

...

cq+k

⎞

⎟⎟⎟⎠ = 0 (59)

or in vector form

Sr(xi )
T ci = 0, (i = 1, 2, . . . , n). (60)

This is a scalar equation, and the corresponding cost function for fi (xi ) is set to be

Ki = 1

2
(ci )T Sr(xi )Sr(xi )

T ci = 1

2
(ci )T Bi ci , (i = 1, 2, . . . , n) (61)

where Bi is a k × k symmetric and non-negative definite matrix. Therefore, Ki ≥ 0
with the minimum value being zero. Ki is zero if and only if Sr(xi )

T ci is zero, i.e.,
Eq. 60 (consequently, Eq. 57) is satisfied. When optimal orthonormal polynomials are
used as r j (xi ), then all of the sums

∑N
s=1 rq+ j (x (s)

i )/N ( j = 1, 2, 3) are zero (see
Eqs. 32–34). In this circumstance Bi is a null matrix, which implies that there is no
need for further restriction on the expansion coefficients for fi (xi ) upon using optimal
orthonormal polynomials.

The 2nd order component function fi j (xi , x j ) is required to be orthogonal to f0
and the 1st order component functions, fi (xi ) and f j (x j ). This can be achieved by
setting fi j (xi , x j ) to be orthogonal to all the basis functions used in f0 (its basis is
1), fi (xi ) and f j (x j ). Since fi j (xi , x j ) is orthogonal to all the basis functions, it must
be orthogonal to any linear combination of these basis functions, and consequently
orthogonal to f0, fi (xi ) and f j (x j ).

Let

fi (xi ) =
k∑

l=1

ci
l r

i
l (xi ), (62)

f j (x j ) =
k∑

l=1

c j
l r j

l (x j ), (63)

fi j (xi , x j ) =
k∑

l=1

c(i j)i
l r i

l (xi ) +
k∑

l=1

c(i j) j
l r j

l (x j )

+
l ′∑

p=1

l ′∑

q=1

c(0)i j
pq r i

p(xi )r
j

q (x j ). (64)
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The orthogonality between fi j (xi , x j ) and f0 is given by

∫
1

⎛

⎝
k∑

l=1

c(i j)i
l r i

l (xi ) +
k∑

l=1

c(i j) j
l r j

l (x j ) +
l ′∑

p=1

l ′∑

q=1

c(0)i j
pq r i

p(xi )r
j

q (x j )

⎞

⎠

wi j (xi , x j )dxi dx j

≈
k∑

l=1

c(i j)i
l

(
N∑

s=1

r i
l (x (s)

i )/N

)
+

k∑

l=1

c(i j) j
l

(
N∑

s=1

r j
l (x (s)

j )/N

)

+
l ′∑

p=1

l ′∑

q=1

c(0)i j
pq

(
N∑

s=1

r i
p(x (s)

i )r j
q (x (s)

j )/N

)

= Sr0(xi , x j )
T ci j = 0, (65)

where ci j is a ti j (= 2k + (l ′)2)-dimensional vector consisting of all expansion coef-
ficients for fi j (xi , x j ).

The orthogonality between fi j (xi , x j ) and the basis r i
v(xi ) is given by

∫
r i
v(xi )

⎛

⎝
k∑

l=1

c(i j)i
l r i

l (xi ) +
k∑

l=1

c(i j) j
l r j

l (x j ) +
l ′∑

p=1

l ′∑

q=1

c(0)i j
pq r i

p(xi )r
j

q (x j )

⎞

⎠

wi j (xi , x j )dxi dx j =
k∑

l=1

c(i j)i
l 〈r i

v(xi ), r i
l (xi )〉

+
k∑

l=1

c(i j) j
l 〈r i

v(xi ), r j
l (x j )〉 +

l ′∑

p=1

l ′∑

q=1

c(0)i j
pq 〈r i

v(xi ), r i
p(xi )r

j
q (x j )〉

≈
k∑

l=1

c(i j)i
l

(
N∑

s=1

r i
v(x (s)

i )r i
l (x (s)

i )/N

)
+

k∑

l=1

c(i j) j
l

(
N∑

s=1

r i
v(x (s)

i )r j
l (x (s)

j )/N

)

+
l ′∑

p=1

l ′∑

q=1

c(0)i j
pq

(
N∑

s=1

r i
v(x (s)

i )r i
p(x (s)

i )r j
q (x (s)

j )/N

)

= Sriv(xi , x j )
T ci j = 0, (v = 1, 2, . . . , k) (66)

where the elements of Sriv(xi , x j )
T are the estimates of the inner products of r i

v(xi )

and all the basis functions used by fi j (xi , x j ). The orthogonality between r j
v (x j ) and

fi j (xi , x j ) can be treated similarly, which gives

Sr jv(xi , x j )
T ci j = 0, (v = 1, 2, . . . , k) (67)
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All together there are 2k + 1 equations in Eqs. 65–67, which can be represented in
matrix form

Sr(xi , x j )
T ci j = 0, (68)

where Sr(xi , x j )
T is a (2k + 1) × ti j matrix, and 0 is a (2k + 1)-dimensional null

vector.
The cost function for the orthogonality between fi j (xi , x j ) and f0, fi (xi ), f j (x j )

is specified as

Ki j = 1

2
(ci j )T Sr(xi , x j )Sr(xi , x j )

T ci j

= 1

2
(ci j )T Bi j ci j , (i < j = 1, 2, . . . , n) (69)

where Bi j is a ti j × ti j symmetric, non-negative definite matrix. Therefore, Ki j ≥ 0
with a minimum value of zero which occurs if and only if Sr(xi , x j )

T ci j is a null

vector, i.e., fi j (xi , x j ) is orthogonal to f0 and all r i
v(xi ) and r j

v (x j ).
A similar treatment can be made for fi jk(xi , x j , xk), and the corresponding cost

function

Ki jk = 1

2
(ci jk)T Bi jkci jk, (i < j < k = 1, 2, . . . , n) (70)

can be constructed. If the 3rd order HDMR expansion is used, the total cost function
is set to be

K =
n∑

i=1

Ki +
∑

1≤i< j≤n

Ki j +
∑

1≤i< j<k≤n

Ki jk

= 1

2
cT Bc (71)

where c consists of all the unknown coefficients in Eq. 35, and

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1

. . .

Bn

B12

. . .

B(n−1)n

B123

. . .

B(n−2)(n−1)n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(72)
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is a non-negative definite matrix. Therefore, K ≥ 0 and its minimum value is zero
which implies the hierarchical orthogonality of the component functions. All Bi j and
Bi jk are submatrices of �T �/N and can be obtained from it.

Importantly, the extended basis method and D-MORPH regression with the cost
function defined above also can be applied to the cases with independent variables. For
example, suppose that xi and x j are independent and optimal orthonormal polynomial
bases are used. Then we have

〈r i
p(xi ), r j

q (x j )〉 =
∫

r i
p(xi )r

j
q (x j )wi j (xi , x j )dxi dx j

=
∫

r i
p(xi )wi (xi )dxi

∫
r j

q (x j )w j (x j )dx j = 0. (73)

and

〈r i
v(xi ), r i

p(xi )r
j

q (x j )〉 =
∫

r i
v(xi )r

i
p(xi )r

j
q (x j )wi j (xi , x j )dxi dx j

=
∫

r i
v(xi )r

i
p(xi )wi (xi )dxi

∫
r j

q (x j )w j (x j )dx j = 0. (74)

Substituting Eqs. 73, 74 into Eq. 66 yields

Sriv(xi , x j )
T ci j = c(i j)i

v 〈r i
v(xi ), r i

v(xi )〉 = c(i j)i
v = 0, (v = 1, 2, . . . , k). (75)

Similarly we have c(i j) j
v = 0(v = 1, 2, . . . , k). Then Eq. 64 becomes

fi j (xi , x j ) =
l ′∑

p=1

l ′∑

q=1

c(0)i j
pq r i

p(xi )r
j

q (x j ), (76)

i.e., the extended basis reduces to the non-extended basis. Moreover, distinct
r i

p(xi )r
j

q (x j )’s are orthogonal for independent xi and x j . The current algorithm reduces
to the prior procedure for treating independent variables [6,13]. Therefore, no matter
whether some or all of the variables are independent and/or correlated, the D-MORPH
regression method with extended bases applies.

4 Illustration

Consider the following nonlinear function with three variables x = (x1, x2, x3)

f (x) = g1(x1, x2) + g2(x2) + g3(x3), (77)
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which will be used here for illustrating the general treatment in Sects. 2 and 3. The
function is specified by

g1(x1, x2) = g1a(x1)g1b(x2)

= [a1(x1 − μ1) + a0][b1(x2 − μ2) + b0], (78)

g2(x2) = c2(x2 − μ2)
2 + c1(x2 − μ2) + c0, (79)

g3(x3) = d3(x3 − μ3)
3 + d2(x3 − μ3)

2 + d1(x3 − μ3) + d0 (80)

with a multivariate normal distribution

w(x) = 1

(2π)3/2|�|1/2 exp

(
−1

2
(x − μ)T �−1(x − μ)

)
, (81)

where μ = (μ1, μ2, μ3) is the expected value of x, � is the covariance matrix of x

� =
⎡

⎣
σ 2

1 ρ12σ1σ2 0
ρ12σ1σ2 σ 2

2 0
0 0 σ 2

3

⎤

⎦ , (82)

i.e., x1 and x2 are correlated, but x3 is independent. The structure of the model in
Eqs. 77–82 permits an analytical solution of the unique HDMR component functions
below for comparison with the numerical approximations.

As the unique HDMR component functions are coupled together in the formu-
las given in Eqs. 26–28, generally a closed form for each component function with
correlated variables cannot be obtained as was the case in Eqs. 5–7 for independent
variables. However, approximate formulas may be constructed by using the following
procedure:

1. Set a maximum order for the truncated HDMR expansion. For instance, if a 2nd
order expansion is used, the higher order component functions are set to zero.

2. Approximate the functions hi (xi ), hi j (xi , x j ) by an expansion in some suitable
basis functions. The determination of hi (xi ) and hi j (xi , x j ) then reduces to iden-
tifying the constant expansion coefficients.

3. Apply the vanishing condition, Eq. 19 or Eq. 21, to all the component functions.
This procedure yields a set of linear algebraic equations, which may be solved for
the constant coefficients.

As the model in Eq. 77 consists of polynomials with order less than 3, its HDMR
expansion only contains zeroth, 1st and 2nd order HDMR component functions. Using
the procedures given above, exact analytical formulas of the unique HDMR compo-
nent functions for f (x) can be obtained. To save space, the details are not given here;
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only the resultant component functions are provided.

f0 = a1b1ρ12σ1σ2 + a0b0 + c2σ
2
2 + c0 + d2σ

2
3 + d0, (83)

f1(x1) = a1b1
σ2

σ1

ρ12

ρ2
12 + 1

(x1 − μ1)
2 + a1b0(x1 − μ1)

−a1b1σ1σ2
ρ12

ρ2
12 + 1

, (84)

f2(x2) =
[

a1b1
σ1

σ2

ρ12

ρ2
12 + 1

+ c2

]
(x2 − μ2)

2

+(a0b1 + c1)(x2 − μ2) − a1b1σ1σ2
ρ12

ρ2
12 + 1

− c2σ
2
2 , (85)

f3(x3) = d3(x3 − μ3)
3 + d2(x3 − μ3)

2 + d1(x3 − μ3) − d2σ
2
3 , (86)

f12(x1, x2) = −a1b1
σ2

σ1

ρ12

ρ2
12 + 1

(x1 − μ1)
2 + a1b1(x1 − μ1)(x2 − μ2)

−a1b1
σ1

σ2

ρ12

ρ2
12 + 1

(x2 − μ2)
2 − a1b1ρ12σ1σ2

ρ2
12 − 1

ρ2
12 + 1

, (87)

f13(x1, x3) = 0, (88)

f23(x2, x3) = 0. (89)

All the component functions satisfy the vanishing condition Eq. 19 (or Eq. 21) and
are hierarchically orthogonal. From the above formulas we find that:

1. The sum of all the component functions is exactly equal to f (x), i.e., the second
order HDMR expansion is an exact representation for f (x).

2. The component functions reflect not only the deterministic relation, Eq. 77, but
also the multivariate normal distribution. For example, f (x) is a linear function
of x1 − μ1, but f1(x1) is quadratic in x1 − μ1 because f (x) is a function of
(x1 − μ1)(x2 − μ2) and x1 is correlated with x2.

3. x3 is independent, and the formula for f3(x3) is the same as that given by Eq. 6
for independent variables.

Since the exact analytical formulas of the component functions are known in this exam-
ple, below we will test the effectiveness of the numerical method based on D-MORPH
regression with extended bases.

4.1 Results for error free data

Six hundred points of x were generated according to the multivariate normal distri-
bution with σ1 = σ2 = 0.2, σ3 = 0.18 and ρ12 = 0.6, and the corresponding values
of f (x) were calculated for a0 = 1, a1 = 2, b0 = 2, b1 = 3, c0 = 3, c1 = 1, c2 =
2, d0 = 1, d1 = 2, d2 = 2, d3 = 3 (referred to as Data set 1). The first three hundred
points were used as training data, and the others were used for testing.
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Table 1 Estimates of the correlation coefficients ρi j from different sample sizes

Data size ρ12 ρ13 ρ23

300 0.5668 −0.1145 −0.0128

600 0.5647 −0.0994 0.0067

1000 0.5765 −0.0679 0.0126

2000 0.5990 −0.0145 0.0276

10000 0.5955 0.0099 0.0190

30000 0.6012 −0.0066 0.0079

4.1.1 Model with 54 unknown parameters

Equations 83–89 show that component functions higher than second order do not exist.
Thus, the second order HDMR expansion with up to 3rd order optimal orthonormal
polynomial bases was employed to represent f (x)

f (x) = f0 +
3∑

i=1

fi (xi ) +
∑

1≤i< j≤3

fi j (xi , x j )

= f0 +
3∑

i=1

3∑

r=1

α(0)i
r ϕi

r (xi ) +
∑

1≤i< j≤3

3∑

r=1

[
α

(i j)i
r ϕi

r (xi ) + α
(i j) j
r ϕ

j
r (x j )

]

+
3∑

p=1

3∑

q=1

β
(0)i j
pq ϕi

p(xi )ϕ
j
q (x j ). (90)

The model contains all fi (xi )(i = 1, 2, 3) and fi j (xi , x j )(i < j = 1, 2, 3). Collec-

tively there are 54 unknown parameters (α(0)i
r , α

(i j)i
r , α

(i j) j
r and β

(0)i j
pq ).

Since optimal orthonormal polynomials are used, no further restriction is needed for
the coefficients α

(0)i
r and the Bi ’s are null matrices. Care is needed in the construction

of Bi j for the cost function. For example, we know that f13(x1, x3) = f23(x2, x3) = 0,
and a zero function is strictly orthogonal to any other function. Including f13, f23 in
the regression model may result in a large bias. As x3 is independent, the correla-
tion coefficients satisfy ρ13 = ρ23 = 0. However, the estimates of the correlation
coefficients based on a small sample size N

ρi j =
∑N

s=1

[
(x (s)

i − x̄i )(x (s)
j − x̄ j )

]

√∑N
s=1(x (s)

i − x̄i )2
√∑N

s=1(x (s)
j − x̄ j )2

, (91)

where x̄i is the average value of x (s)
i , can produce large errors. Table 1 gives the

estimates of ρi j with different sample sizes.
When 300 samples are used, the results significantly differ from ρ12 = 0.6, ρ13 =

ρ23 = 0, and the estimates of the inner products 〈r i
p(xi ), r3

q (x3)〉(i = 1, 2) used in the
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construction of Bi j , and consequently the resultant f13(x1, x3) and f23(x2, x3) will
also significantly differ from zero. In order to test the new method, in the construction
of the cost function we simply set 〈r i

p(xi ), r3
q (x3)〉 = 0 (i = 1, 2).

The comparison between the analytical solution and the solution obtained by
D-MORPH regression with extended bases is given in Fig. 1. The figure shows that
using the model with 54 unknown parameters and the cost function given above, the
component functions fi (xi ) obtained by D-MORPH regression with extended bases
coincide very well with the analytical solution. The approximate results for f12(x1, x2)

obtained by D-MORPH regression with extended bases does not coincide with the ana-
lytical solution for an arbitrary point (x1, x2). However, the numerical and analytical
results do agree for those pairs of points which satisfy the correlated pdf, because the
estimated f12(x1, x2) is obtained only from the data generated by the pdf. To compare
the numerical and analytical solutions, the truth plot for f12(x1, x2) is given at the
sampled points according to the pdf. Some points are not exactly located on the truth
plot line. This was caused by the limited sample size (300 points). The resultant terms
Sr0(x1, x2), Sr1v(x1, x2) and Sr2v(x1, x2) have errors just like the determination of
ρi j . Figure 1 also shows that f13(x1, x3) and f23(x1, x3) obtained by the numerical
method at the sampled points are practically zero. Therefore, their values are simply
shown according to their sample order. Figure 1 demonstrates that the component
functions are unique, and the new numerical method accurately determines them.

The accuracy of least-squares regression given by Eq. 47 and D-MORPH regression
with extended bases is given in Table 2 and Fig. 2. Since the model, Eq. 90, contains
f13 and f23 which do not exist in the true system, the least-squares solution (Eq. 47) is
far from the true system which causes a large error. In contrast, D-MORPH regression
with extended bases accurately finds the true system.

4.1.2 Model with 24 unknown parameters

In practice, we do not know which component functions, such as f13(x1, x3) and
f23(x1, x3), are zero in advance. Therefore, a priori setting 〈r i

p(xi ), r3
q (x3)〉

= 0 (i = 1, 2) is not proper. To deal with this situation, we first use a statistical test
(F-test) to identify the significant HDMR component functions from the training data
[13,17]. In the present example, this gives

f (x) = f0 +
3∑

i=1

fi (xi ) + f12(x1, x2)

= f0 +
3∑

i=1

3∑

r=1

α(0)i
r ϕi

r (xi ) +
3∑

r=1

[
α(12)1

r ϕ1
r (x1) + α(12)2

r ϕ2
r (x2)

]

+
3∑

p=1

3∑

q=1

β(0)12
pq ϕ1

p(x1)ϕ
2
q(x2) (92)

with 24 unknown parameters (α(0)i
r , α

(12)1
r , α

(12)2
r and β

(0)12
pq ). Note that the model

in Eq. 92 does not contain f13 and f23, as they were identified as insignificant by
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Fig. 1 Comparison of fi (xi ), fi j (xi , x j ) obtained analytically and numerically by D-MORPH regression
with extended bases for the model having 54 unknown parameters and Data set 1
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Table 2 Accuracy of least-squares regression and D-MORPH regression with extended bases for the model
having 54 unknown parameters and Data set 1

Data Least-squares regression D-MORPH regression

Ave. abs. err. Ave. rel. err. Ave. abs. err. Ave. rel. err.

Training 0.410 0.069 0.033 0.006

Testing 0.431 0.074 0.045 0.007

2

4

6

8

 10

 12

 14

 16

2 4 6 8  10  12  14  16

Le
as

t-
sq

ua
re

s 
so

lu
tio

n 
of

 y
 

Model value of y

Training date

2

4

6

8

 10

 12

 14

 16

2 4 6 8  10  12  14  16

Le
as

t-
sq

ua
re

s 
so

lu
tio

n 
of

 y
 

Model value of y

Testing data

2

4

6

8

 10

 12

 14

 16

2 4 6 8  10  12  14  16

D
-M

O
R

P
H

 s
ol

ut
io

n 
of

 y

Model value of y

Training date

2

4

6

8

 10

 12

 14

 16

2 4 6 8  10  12  14  16

D
-M

O
R

P
H

 s
ol

ut
io

n 
of

 y

Model value of y

Testing data

Fig. 2 Truth plots of training and testing data for least-squares regression and D-MORPH regression with
extended bases for the model having 54 parameters and Data set 1

the F-test procedure. Both least-squares regression given by Eq. 47 and D-MORPH
regression with extended bases were used. For the model with 24 unknown parameters
the accuracy for the two methods is the same. The results are given in Table 3 and
Fig. 3.
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Table 3 Accuracy of least-squares regression and D-MORPH regression with extended bases for the model
having 24 unknown parameters and Data set 1

Data Least-squares regression D-MORPH regression

Ave. abs. err. Ave. rel. err. Ave. abs. err. Ave. rel. err.

Training 0.035 0.006 0.035 0.006

Testing 0.045 0.007 0.045 0.007
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Fig. 3 Truth plots of training and testing data obtained by least-squares regression and D-MORPH regres-
sion with extended bases for the model having 24 unknown parameters and Data set 1

Even though the accuracy for the two methods is the same, the resultant com-
ponent functions are distinct. f1(x1) and f2(x2) are orthogonal to f12(x1, x2) for
D-MORPH regression with extended bases, but they are not orthogonal for least-
squares regression. Figures 4 and 5 show that the component functions obtained by
D-MORPH regression with extended bases accurately coincide with the analytical
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Fig. 4 Comparison of fi (xi ) (i = 1, 2, 3) obtained analytically and numerically by least-squares and
D-MORPH regressions with extended bases for the model having 24 unknown parameters and Data set 1
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Fig. 5 Comparison of f12(x1, x2) obtained analytically and numerically by least-squares and D-MORPH
regressions with extended bases for the model having 24 unknown parameters and Data set 1

Table 4 Orthogonality of the component functions obtained by least-squares regression and D-MORPH
regression with extended bases for the model having 24 unknown parameters and Data set 1

Data Least-squares regression D-MORPH regression

Cost 〈 f1, f12〉 〈 f2, f12〉 Cost 〈 f1, f12〉 〈 f2, f12〉
Training 0.209 0.215 0.251 0.019 0.000 0.000

Testing − 0.231 0.273 − 0.003 0.015

solutions, while those (except of f3(x3) with independent variable x3) obtained by
least-squares regression do not.

The value of the cost function and the estimates of the inner products 〈 f1(x1), f12(x1,

x2)〉, 〈 f2(x2), f12(x1, x2)〉 given in Table 4 also show the difference. Having unique
and accurate HDMR component functions is essential for the reliable performance of
global sensitivity analysis.

4.2 Results for data with random errors

To test the influence of random errors on the determination of the HDMR component
functions by D-MORPH regression with extended bases, random noise with a signal
to noise ratio (Var( f (x))/σ 2) = 100 was added to f (x) to generate another set of
data (referred to as Data set 2). A comparison of Data sets 1 and 2 is given in Fig. 6.

Using the model with 24 unknown parameters, least-squares regression and
D-MORPH regression with extended bases were used to treat the data. The fitting
accuracy is given in Table 5 and Fig. 7.

Similar to the error free data case, the accuracy for the two methods are the same, but
the resultant HDMR component functions are distinct. Least-squares regression does
not give the correct component functions. Comparison of the component functions
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Fig. 6 Comparison of Data sets
1 and 2
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Table 5 Accuracy of least-squares regression and D-MORPH regression with extended bases for the model
having 24 unknown parameters and Data set 2

Data Least-squares regression D-MORPH regression

Ave. abs. err. Ave. rel. err. Ave. abs. err. Ave. rel. err.

Training 0.131 0.022 0.131 0.022

Testing 0.133 0.022 0.133 0.022

obtained analytically and numerically by D-MORPH regression with extended bases
is given in Fig. 8, which shows that the random error did not have a significant influ-
ence on the solution (i.e., compare Fig. 8 with the plots in the first column of Figs. 4
and 5) and the resultant component functions still accurately coincide with the ana-
lytical solutions. This stability with respect to noise is important for global sensitivity
analysis based on component functions obtained from laboratory/field data containing
random errors.

5 Concluding remarks

Global sensitivity analysis is an important application of HDMR. In this regard, we
recently introduced a new unified global sensitivity analysis framework for systems
with independent and/or correlated variables referred to as Structural and Correlative
Sensitivity Analysis (SCSA) [15]. The precondition for reliable application of SCSA
is the generation of correct HDMR component functions. A high quality input–output
map fitting the training data is a necessary, but not sufficient, condition for a reliable
subsequent sensitivity analysis assessment. Therefore, the uniqueness of the HDMR
component functions for independent and/or correlated variables is crucial for obtain-
ing a physically meaningful global sensitivity analysis. Under the relaxed vanishing
condition or hierarchical orthogonality condition, the general formulas for the unique
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Fig. 7 Truth plots of training and testing data for least-squares regression and D-MORPH regression with
extended bases for the model having 24 unknown parameters and Data set 2

HDMR component functions for independent and/or correlated variables are derived
in this paper. The results reduce to the prior formulas used for independent variables
[10,16] as a special case. As the general expression determining a component func-
tion with correlated variables contains all other component functions sharing the same
common variables, generally a closed form for each component function may not be
obtained. However, a novel and practical numerical method, combining extended bases
and D-MORPH regression, can efficiently and accurately determine the unique HDMR
component functions from available input–output data. This numerical method can be
used for both independent and correlated variables. A reasonable level of random
data error was found to not significantly influence the determination of the HDMR
component functions. Thus, a unified framework is established for the unique HDMR
decomposition of an n-variate function f (x) with independent and/or correlated vari-
ables.
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Fig. 8 Comparison of fi (xi ), f12(x1, x2) obtained analytically and numerically by D-MORPH regression
with extended bases for the model having 24 unknown parameters and Data set 2
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